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Abstract. We compare the probability distributions and Binder cumulants of the overlap in
the 3D Ising spin glass with those of the magnetization in the ferromagnetic 2DXY model.
We analyse similarities and differences. Evidence for the existence of a phase transition in the
spin glass model is obtained thanks to the crossing of the Binder cumulant. We show that the
behaviour of theXY model is fully compatible with the Kosterlitz–Thouless scenario. Finite-
size effects have to be dealt with carefully in order to differentiate between two very different
physical pictures that can look very similar.

1. Introduction

The existence of a phase transition in the three-dimensional (3D) Ising spin glass has caused
problems for more than two decades (see for example [1, 2] and references therein). Today
there is clear numerical evidence favouring the existence of a low-temperature broken phase
[3–5, 2], but a deeper understanding of the underlying physics is still absent. It is clear, for
example, that one is very close to the lower critical dimension (LCD), but understanding
the details of the influence of such an effect is problematic.

Determining, for example, the infinite-volume limit of the Edward–Anderson order
parameter [6] (qEA) has been beyond reach until very recently, and the existence of the
phase transition (in both three and four dimensions) has been established by exhibiting the
crossing of the finite-size Binder parameter. One was able to show (for the 3D case see
[3, 4]) that curves ofgL(T ), gL+1(T ) as a function ofT would cross atT (L)c , but it was
impossible to determine the non-trivial limit ofgL(T ) for L → ∞ at T < Tc (and in
the same way it was impossible to determine the large-volume limit ofqEA). Only very
recently have off-equilibrium techniques [7] and equilibrium simulations based on parallel
tempering [8] allowed a statistically significant determination of the four-dimensional (4D)
infinite-volume order parameterqEA.
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We start here by noting that the behaviour of the Binder parametergL(q) in the 3D
spin glass is very reminiscent of the one in the two-dimensional (2D)XY model (without
quenched disorder),gL(m) (herem is the magnetization). Even for quite large lattices the
curves for different lattice volumes are well split in the high-T phase, but seem to merge
rather than cross at lowT . Only on very large lattices can one see a non-ambiguous (but
always very small) crossing [3, 5]. The 2DXY model shows that the order parameter goes
to zero very slowly when we take the thermodynamical limit.

The same type of effect could be appearing in the 3D Edward–Anderson spin glass, and
in order to be sure one is dealing with a real phase transition with a non-zero order parameter
one has to be very careful, and keep possible contamination under control. That is why we
have decided to run a comprehensive comparison of the order-parameter distributions for
the 3D Edward–Anderson spin glass and for the 2DXY model. A detailed paper by Binder
[9], containing a study of the distribution functions for the Ising model, can be considered
a methodological prototype for this type of analysis, and can be used as a nice introduction
to the finite-size scaling techniques and ideas used in this setting.

Let us start by reminding the reader about some main points concerning the definition
of the LCD. The lower and upper critical dimensions (dl anddu respectively) are important
in qualifying a statistical system.du is the minimal dimension where mean-field predictions
hold (apart from logarithmic corrections), while the LCD,dl , is the maximal dimension
where the finite-T phase transition disappears. A typical example is the usual Ising model,
with dl = 1 anddu = 4 [10].

Since aφ3 term appears in the effective Hamiltonian of spin glasses (see [6, 11] and
references therein) one expects the upper critical dimension to bedu = 6. One of the
possible ways to determine the LCD is based on the determination of the critical exponent
η. One starts from the two-point correlation function at the critical point,T = Tc, that for
|x− y| → ∞ behaves as

〈φ(x)φ(y)〉 ' |x− y|−(d−2+η). (1)

The LCD is defined by

dl − 2+ η(dl) = 0 (2)

i.e. by the fact that there is no power-law decay of the two-point correlation function at the
(T = 0) critical point. A (replica-symmetric)ε-expansion computation [12] gives

η = − 1
3ε + 1.2593ε2+ 2.5367ε3 (3)

whereε ≡ (6− d). At order ε one obtains the promising estimatedl = 3, that collapses
when the higher-order contributions are included. This does not allow any real solution
for dl 6 6. It is clear that because there could be many causes for problems (for example,
replica symmetric breaking and poor convergence of theε-expansion) theε-expansion is
not helpful in determining the LCD.

Equation (2) allows an estimate ofdl based on numerical estimates of theη exponent.
In four dimensions, with Gaussian couplings, one findsη = −0.35± 0.05 [7], while in 3D
η = −0.40± 0.05 [5]. The variation ofη with d is small, and it seems safe to estimate
dl ' 2.5. Even if this result is somehow peculiar (since in the field theoretical approach
[11] one does not see any trace of propagators with non-integer powers) it is confirmed by a
mean-field-based analysis [13] where one builds up an interface and looks at its behaviour.
This mean-field computation givesdl = 2.5, in excellent agreement with the numerical
estimate.

Numerical simulations in 3D [3, 5, 2] have now clearly shown that there is a finite-T

phase transition, i.e. thatdl < 3. The broken phase is mean-field-like, and understanding it
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in more detail will be the aim of this paper. It is also well established that in 2D one finds
a T = 0 phase transition (see [2] and references therein). Summarizing, from state of the
art numerical simulations one can deduce that 26 dl < 3.

The fact thatdu = 6 is also well supported by numerical results [14, 15]. In 6d one
cen determine mean-field exponents (γ = 1, β = 1 andz = 4) with good accuracy, with
logarithmic corrections (that have been detected in the equilibrium simulations).

Here we will try to shed more light on the difficult numerical simulations of the 3D
Edward–Anderson spin glass. The main problem is probably the fact that the system is
very close to its LCD. So the apparent merging of the Binder parameters in the low-T

region, that has only recently been disentangled to show a significant crossing [3–5], is
dramatically reminiscent of the one observed in the case of a Kosterlitz–Thouless (KT)
transition. We will try here to learn more about the effects of an anomalous situation
such as the KT one, by looking, for example, at the Binder cumulant and to the overlap
probability distributionP(q). To do this we will discuss in some detail the structure of
the order-parameter probability distribution in the 2DXY model without disorder. We will
stress how similar to the 3D spin glass things are at a first level of analysis, and where the
relevant differences can be found. It is also remarkable that the pure 2DXY model has a
peculiarageing behaviour [16]: ageing is one of the crucial features of spin glass systems,
and its qualification is of large importance.

In the next section we will define our models, the physically observable quantities,
and give details about our numerical simulations. In section 3 we discuss our results, by
following, in parallel, the 2DXY model without disorder and the 3D spin glass. In section 4
we draw our conclusions.

2. Models, observables and simulations

We have studied the 2DXY model on a squared lattice. The volume is denoted byV = L2,
the Hamiltonian is

H = −
∑
〈x,y〉

cos(φx − φy) (4)

where〈x, y〉 denotes a sum over nearest-neighbour site pairs,φ is a continuous real variable,
and periodic boundary conditions are imposed on the system. This model shows aninfinite-
order phase transition (withβc ≈ 1.11) [17], the KT transition. In accordance with the
Mermin–Wagner theorem [10] there cannot be non-zero-order parameters: the magnetization
in the thermodynamical limit is zero for allT > 0. The KT transition is characterized
by a change in the behaviour of the two-point correlation function, which goes from
the exponential decay of the high-temperature phase to the algebraic decay of the low-
temperature phase. The whole low-temperature phase (β > βc) is critical (the correlation
length is infinite).

To simulate this model we have used the Wolff single-cluster algorithm [18]. The
simulations have been run at five different values ofβ in the low-temperature phase:
β = 1.3, 1.4, 1.5, 1.7, 2.0. For each value ofβ we have used the lattice sizesL =
8, 16, 32, 64, 128, 256. For each value of(β, L) we have used 200 000 iterations of the
single-cluster algorithm, discarding the first half for thermalization. The total CPU time
required has been approximately 1 month on a 100 MHz Pentium-based computer.

We have measured the probability distributions of

m1 ≡ 1

V

∣∣∣∣Re
∑
x

exp(iφx)

∣∣∣∣ (5)
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that we denote asP1(m1). We callmmax
1 the value ofm1 whereP1(m1) is at a maximum

and takes the valuePmax
1 ≡ Max[P1(m1)]. We have looked in detail at the first and second

moments ofP1(m1), 〈m1〉 and 〈m2
1〉. We have also computed the Binder cumulant of the

P1(m1) distribution:

B1 = 1

2

(
3− 〈m

4
1〉

〈m2
1〉2
)
. (6)

At low T one can study theXY model by using the spin-wave approximation that neglects
the role of vortices (since they are suppressed at lowT ). In theT → 0 limit all the spins
point in the same direction, and (θ ) is uniformly distributed, so that

〈mp1 〉 =
1

2π

∫ 2π

0
dθ cosp θ (7)

and the Binder cumulant atT = 0 has the value

B1(T = 0) = 3
4. (8)

To determine the relevant scaling behaviour we use the fact that, for theXY model,
χ ' L2−η(T ) and〈m2〉 ≡ χ/L2, where in the spin-wave approximation

η(T ) = T

2π
(9)

is the anomalous dimension of the field. Moreover, sinceP1(m1) is a probability distribution,
normalized to one, with non-zero maximum value (mmax

1 ) (at least for finite values of the
lattice sizes) and with〈m2

1〉 ' L−η → 0 (at finite temperatures) we have that†
Pmax

1 mmax
1 ' 1 (10)

independently of the lattice size,L. Since

mmax
1 ' 〈m1〉 ' 〈m2

1〉1/2
we conclude that

mmax
1 ' L−η(T )/2
〈m1〉 ' L−η(T )/2
〈m2

1〉 ' L−η(T )
Pmax

1 ' Lη(T )/2.

(11)

The other model we have studied is the 3D Ising spin glass with quenched random couplings,
J , distributed with a Gaussian law. The Hamiltonian is

H ≡ −
∑
〈i,j〉

σiJi,j σj (12)

where the spin are defined on a 3D cubic lattice and〈i, j〉 denotes a sum over nearest-
neighbour pairs.

As usual [2] we have simulated two real replicas (σ and τ ) with the same quenched
couplings, and we have measured the overlap

q(σ, τ ) ≡ 1

V

∑
i

σiτi (13)

and its probability distribution

P(q) = 〈δ(q − q(σ, τ )〉 (14)

† In the rest of the paper the symbolA ' B meansA = O(B).
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where, as usual, we denote the thermal average with〈(· · ·)〉, and the average over the
disorder distribution with(· · ·). The Binder cumulant of the probability distributionP(q)
is

g ≡ 1

2

[
3− 〈q

4〉
〈q2〉2

]
. (15)

We have runL = 4, 6, 8, 10, 12 and 16 lattices with 2048, 2560, 512, 512, 2048 and 500
samples respectively. We have used the supercomputer APE-100 [19].

For simulating the spin glass model we have used the simple tempering method for
small lattices (L 6 10), and the parallel tempering scheme for large lattices (L > 12) (see
[20, 21, 2] and references therein). Thanks to that we have kept the level of thermalization
reached by the system under control, that is very good in all cases (for a discussion of
the standard criteria of control see [21]). We have checked that the equalities established
numerically in [4], and proven by Guerra [22] hold for our results, and that theP(q) is
well symmetric, supporting the reach of full thermalization.

3. Results

In figures 1 and 2 we show the Binder cumulant and the probability distribution of the 3D
Ising spin glass. Let us discuss first the Binder cumulant. In figure 1 there are two different
regions. In the high-temperature region the curves corresponding to different lattice sizes
are clearly split (they tend to zero in the thermodynamical limit). At low temperature (i.e.
for β larger thanβSG

c ≈ 1.0), on small lattice sizes (up toL = 10) the curves coalesce,
within our small error bars, into one. It is interesting to note that defining a Binder cumulant
based on three different replicas [23] allows a somewhat easier determination of the critical
behaviour.

0.8 1.0 1.2

T

0.4

0.5

0.6

0.7

0.8

0.9

g L=4

L=6

L=8

L=10

L=12

L=16

Figure 1. Binder cumulant for the 3D Ising spin glass. On the right, from top to bottom, curves
and data points are forL = 4, 6, 8, 10, 12 and 16.
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Figure 2. Probability distribution of the overlap,P(q), for the 3D Ising spin glass (T = 0.7).
From right to left the curves and data points are forL = 4, 6, 8, 10 and 16.

0.6 0.8 1.0 1.2 1.4

β
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0.2

0.4

0.6

0.8

B
1

L=4

L=8

L=16

Figure 3. Binder cumulant,B1, for the 2DXY model. From top to bottom,L = 4, 8 and 16.

Only when thermalizing anL = 16 lattice (quite large for current standards, and
impossible to thermalize deep in the critical region without the use of parallel tempering
[2]) one is able to distinguish a clear crossing between, for example, theL = 8 curve and
theL = 16 curve. This implies the existence of a phase transition at finite temperature with
a non-zero order parameter,qEA 6= 0 (see Kawashima and Young [3] for the model with
quenched binary couplings,J = ±1).
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Figure 4. Probability distribution for the 2DXY model,P1(m1), at β = 1.3.

Table 1. Numerical data for the 2DXY model,β = 1.3. See the text for further details.

L mmax
1 〈m1〉 〈m2

1〉 Pmax
1 P1(0)

16 0.74(1) 0.485(6) 0.283(4) 2.64(9) 0.83(5)
32 0.70(1) 0.456(5) 0.260(3) 2.79(8) 0.93(2)
64 0.66(1) 0.431(5) 0.231(3) 3.00(9) 0.97(6)

128 0.62(1) 0.405(4) 0.205(2) 3.08(7) 0.94(9)
256 0.60(1) 0.382(5) 0.183(3) 3.36(11) 1.09(6)

We can compare figure 1 with figure 3, where we show our numerical results for the
Binder cumulant,B1, for the 2DXY model. Up toL = 10 theXY model and the 3D Ising
spin glass have a very similar behaviour: again, within error bars, in the low-temperature
region all the curves for different lattice sizes collapse in a single curve, without any visible
sign of finite-size effects.

The behaviour of the full probability distribution of the order parameter (m1 for the
2D XY model andq for the 3D Ising spin glass) is very similar. Figures 4 and 5, where
we showP1(m1) at β = 1.3 andβ = 2.0 respectively, can be compared to the analogous
figure 2 for the spin glassP(q). The overall shapes are very similar. The peak shifts to the
left and, in both cases,P(0) looks constant in our statistical precision.

We give in table 1, atβ = 1.3, the expectation values of the observables shown in
figures 4 and 5. By fitting these values by using a single power fit we find

mmax
1 ' L−(0.08±0.01)

〈m1〉 ' L−(0.09±0.01)

〈m2
1〉 ' L−(0.17±0.01)

Pmax
1 ' L+(0.09±0.01).

(16)

These results are in remarkable agreement within themselves and in good agreement with
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Figure 5. Probability distribution for the 2DXY model,P1(m1), at β = 2.0.

the exact spin wave valueη(β = 1.3) = 0.12. Corrections due to vortices are equivalent to
a higher effective temperature [24], that here undergoes a 30% shift.

We have also established that a power fit to a non-zero infinite-volume order parameter
of the form

mmax
1 (L) = mmax

1 (∞)+ A

LB
(17)

with mmax
1 (∞) different from zero andA andB constant is excluded by the data.

Figures 4 and 5 are interesting: they show a finite-size non-trivial behaviour that we
know, from theoretical ideas (the Mermin–Wagner theorem) and from the analysis of the
numerical data, will converge to a zero centred delta-function distribution in the infinite-
volume limit. This is the point we want to stress. Since the 3D spin glass has a very similar
behaviour (and even for the 4D model, where the crossing of the Binder cumulant is clear,
it is non-trivial to show thatqEA tends to a non-zero limit) it is crucial to understand where
the differences appear.

We also want to stress thatP1(m1) shows a clear plateau, roughlyL-independent, close
to them1 ' 0 region. The plateau height grows with the lattice size (in a statistically
significant way in our numerical data, see figure 1). This is one of the interesting results to
note: the infinite-volume 2DXY m1 delta function is constructed from the increasing finite
volumes by a finitem1 peak that shifts towardsm1 ' 0, and by a plateau in them1 ' 0
region that slowly increases with the lattice size, to eventually match the peak in them1 = 0
delta function.

We have repeated this analysis for the overlap probability distributionP(q) of the 3D
spin glass (see figure 2). The best scaling fit of the peak position,qM, where the probability
distribution is maximum, by a power law (the data are shown in table 2) gives

qM = (0.70± 0.02)+ (1.6± 0.7)L−(1.5±0.4) (18)

where T = 0.7. In this fit we have used all lattice volumes (L 6 16). The fit had a
χ2/dof = 0.15. This thermodynamical value we get forqEA is close to the value that has
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Table 2. Numerical data for the 3D Ising spin glass,T = 0.7. See the text for further details.

L qM P(0)

4 0.91(1) 0.398(3)
6 0.81(1) 0.376(5)
8 0.77(1) 0.39(2)

10 0.76(1) 0.39(2)
16 0.72(1) 0.49(7)

0 0.025 0.050 0.075 0.100 0.125

L–1.5

0

0.2

0.4

0.6

0.8

1.0

q M

Figure 6. Value of the overlapqM such thatP(q) is maximum (3D Ising spin glass). The
continuous line is the fit described in the text.T = 0.7.

been extracted from an off-equilibrium simulation (q ' 0.7) [5]. The best (two-parameter)
fit obtained by fixingqM = 0.7 (considered as an input from the dynamical simulations)
gives compatible results with smaller errors. In figure 6 we show theqM data versusL−1.5

(see also table 2), and the curve from the best (two-parameter) fit.
From the numerical data for the 3D spin glass (these are taken from a state-of-the-

art large-scale numerical simulation) we cannot exclude the possibility ofqEA = 0 in the
infinite-volume limit. We find that the best fit (that uses, in this case, onlyL > 6 data)

qM = (1.0± 0.1)L−(0.12±0.02) (19)

is very good. So, even if the scenario of a non-zero overlap is favoured (the static value is
equal to the dynamic one, the exponent of a decay toq = 0 is very small) in the 3D case
we cannot use this limit to be sure of the existence of a phase transition with a non-zero
order parameter (in 4D recent high statistical data established this evidence [8]). The safe
evidence for the existence of a phase transition in the 3D spin glass relies, at the moment on
the statistically significant crossing of the finiteL Binder cumulant [3, 5], which revealed
the fine details of the equilibrium probability distribution.

The behaviour ofP(0) also turns out to be the potential source of many ambiguities.
We have seen that in theXY model it grows very slowly with the lattice size, in order to
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asymptotically contribute to them1 = 0 delta function. In the 3D spin glass, where in a
mean-field-like broken phase we expect a finite limit forP(0), we also observe a constant
plateau with a (not necessarily statistically significant) growth forL = 16. This behaviour
contributes to falsify the droplet model picture, where one would expectP(0) to decrease
with the lattice size.

4. Conclusions

We have shown that the 2D ferromagneticXY model and the 3D Ising spin glass
finite-volume order-parameter probability distributions behave very similarly. The Binder
cumulants on small lattice volumes show a similarmergingat low T . Only on large lattices
does the 3D spin glass exhibit a crossing typical of a phase transition. The results that we
have discussed for theXY model are completely compatible with the KT predictions. We
have analysed the finite-volume behaviour of the peak of the finite-volume order-parameter
probability distribution. In the case of theXY model the preferred limit is zero. In the spin
glass case the preferred value is non-zero, and compatible with an off-equilibrium estimate,
but from the present data one cannot rule out the possibility of the position of the peak
going to zero in the infinite-volume limit.

We have also established thatP(0) in the KT scenario has a finite-volume non-zero
value, that increases in the infinite-volume limit. In the finite volume one can then exhibit
probability distributions with the same shape as that of a finite-dimensional spin glass that
has a trivial thermodynamic limit (a delta function in the origin). Analysing finite-size
effects is crucial before reaching conclusions about the critical behaviour. In the 3D spin
glass good evidence for the existence of a mean-field-like phase transition is based on a
dynamical determination of the Edward–Anderson order parameter and on the crossing of
the Binder cumulant on large lattices, but determining with good precision the shape ofP(q)

on large lattice sizes will be important for making more details of the critical behaviour
crystal clear.
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